ENDO-5-BROMO-1,2,3,4,5,6-HEXAMETHYLBICYCLO[2.1.1]HEXENYL CATION.

H. Hogeveen and P.W. Kwant.

Department of Organic Chemistry, The University, Zernikelaan, Groningen, The Netherlands.

(Received in UK 13 December 1972; accepted for publication 2 January 1973)

The formation of 1,2,3,4,5,6-hexamethylbicyclo[2.1.1]hexenyl cations (1) by endoprotonation of hexamethylDewarbenzene (2) and their subsequent rearrangement was reported some time ago.¹ Recently the endo-5-chloro analog (3) was reported, which is obtained from reaction of $\operatorname{cl}^{\oplus}[\operatorname{AuCl}_{4}]^{\circ}$ with 2². Upon addition of other electrophiles products are observed which are presumably derived from similar 1,2,3,4,5,6-hexamethyl-bicyclo[2.1.1]hexenyl cations.³ However the addition of bromine to the parent Dewarbenzene⁴ occurs without skeletal rearrangement, yielding 2,3-dibromobicyclo[2.2.0]hexenes.

We wish to report here the exclusive formation of endo-5-bromo-1,2,3,4,5,6-hexamethylbicyclo[2.1.1]hexenyl cation ($\underline{4}$) from the reaction of a solution of 2 in methylene chloride with one eq. of bromine at -90°. It is assumed that $\underline{4}$ is formed from an endo attack of bromine on 2, as is the case with protons.^{1b} Experimental evidence was not found for the alternative pathway, an <u>exo</u> attack, followed by rearrangement of the formed <u>exo</u>-5-bromo cation. The NMR spectral data of the solution of ion $\underline{4}$ in methylene chloride at -60° are presented in the table. The <u>endo</u> position of the bromine atom is assigned on the basis of comparison of the chemical shifts of the methyl groups of $\underline{4}$ with those of the <u>exo</u>- and <u>endo</u>-ions <u>1a</u> and <u>1b</u> as done previously for $\underline{5}^2$.

	α	β	Ŷ	δ
1b (endo CH ₃)	2.10	1.68	1.39	0.80
<u>1a (exo</u> CH ₃)	2.12	1.56	1.43	1.47
<u>3</u> (<u>exo</u> CH ₃)	2.27	1.68	1.58	1.95
$\frac{4}{2}$ (exo CH ₃)	2.39	1.70	1.80	2.10

Upon pouring a solution of $\frac{1}{4}$ at -80° in excess sodium methoxide/methanol, compound 5 was formed in 90% yield (determined by NMR). Structure 5^{5} was assigned on the basis of the NMR spectrum (CCl₄): 3.12, 1.18, 1.07 (s, each 2 CH₃) 0.99 and 0.95 (s, each 1 CH₃) ppm. The shift enhancement upon addition of Eu(dpm)₃⁶ is much larger for the peak at 0.99 than for the peak at 0.95 ppm, which can only be explained by assuming an <u>endo</u> position of the ether functions.⁷ Upon standing in the air at room temperature 5 decomposes, yielding a reaction mixture containing methanol⁸, one or more compounds with a terminal methylene group⁸ and a major product (60%) for which structure $\underline{6}$ is proposed. This is based on the NMR spectrum (CCl₄) 1.28 (s, 1 CH₃) 1.10 to 1.00 (four partially overlapping s, each 1 CH₃) 0.92 (s, 1 CH₃)⁹ ppm, IR spectrum (neat) 3435 cm¹ (broad absorption, OH), mass spectrum: strong peak at 178 (196 - H₂0)¹⁰. In the reaction of $\underline{4}$ with KOH/EtOH of -80° , $\underline{6}$ was formed also (80% yield). In a rapid acid catalysed reaction, which at room temperature even occurs on standing in the air, $\underline{6}$ isomerises to $\underline{7}$, which was identified by comparing the spectra (NMR, IR and mass) with those of authentic material.¹¹

When a solution of cation $\underline{4}$ with Br⁹ as anion in methylene chloride was warmed up, no peaks were observed that could be ascribed to the <u>exo-5-bromo</u> isomer of $\underline{4}$. At -40° the spectrum of $\underline{4}$ disappeared and the NMR spectrum showed the presence of <u>8</u> (90%), but no intermediates were observed. Structure <u>6</u> was assigned on the basis of the following data: mass spectrum: peaks at 320, 322, 324 (1:2:1), IR spectrum: besides absorptions due to C-C and C-H weak absorptions at 1650 and 1620 cm⁻¹ (C=C), UV spectrum: $\lambda_{max}^{pentane}$ 278 mu¹², NMR spectrum (methylene chloride): 4.30 (q, J=7 cps. 1 H) 4.20 (s¹³, 2 H) 1.90 (s¹³, 2 CH₃) 1.82 (s¹³, 1 CH₃) 1.31 (d, J=7 cps. 1 CH₃) 1.14 (s, 1 CH₃) ppm.

A mechanism rationalising the formation of $\underline{8}$ is shown below. In a way analogous to the reaction of the ions $\underline{1}^{1b}$ $\underline{4}$ conceivably isomerises via an 1,2 alkyl shift to 9, followed by β -fission to give 10. Subsequently 10 may give rise to an 1,4 hydrogen shift, yielding the highly stabilised ion 11, which can react with Br⁻ to yield 8. The intramolecular nature of the unusual 1,4 hydrogen shift is in agreement with the result of a high dilution experiment¹⁴, in which it was shown that both the product (8) and its rate of formation are independent from the concentration of $\underline{4}$ (10⁻⁴ mole/1 <u>vs.</u> 1 mole/1). From the observed product it is concluded, that 10 shows no effective rearrangement to 12, as in the case of ions 1^{1b}.

Footnotes and References.

- 1. (a) H. Hogeveen and H.C. Volger, <u>Rec. Trav. Chim.</u> <u>87</u>, 1024 (1968); <u>88</u>, 353 (1969)
 - (b) H. Hogeveen and P.W. Kwant <u>Tetrahedron Lett</u>. <u>1972</u>, 3197; recent experiments below -100° showed the protonation of 2 by HCl to be exclusively endo.
- 2. R.Hittel, P. Tauchner and H. Forkl, Chem. Ber. 105, 1 (1972).
- 3. (a) A.G. Anastassiou and S.W. Eachus, Chem. Comm. 1970, 429.
 - (b) L.A. Paquette, R.J. Haluska, M.R. Short, L.K. Read and J. Clardy, J. Am. Chem. Soc. <u>94</u>, 529 (1972).
 - (c) G.R. Krow and J. Reilly, Tetrahedron Lett. 1972, 3129, 3133.
 - (d) L.A. Paquette, S.A. Lang Jr., S.K. Porter and J. Clardy, *ibid*. <u>1972</u>, 3137,3141.
- 4. E.E. van Tamelen and D. Carty, J. Am. Chem. Soc. 93, 6102 (1972).
- 5. Because of thermal instability and air sensitivity a mass spectrum and an accurate C,H- analysis could not be obtined.
- 6. J.K.M. Sanders and D.H. Williams, <u>J. Am. Chem. Soc</u>. <u>93</u>, 641 (1971).

P.V. Demairco, T.K. Elzey, R.B. Lewis and E. Wenkert, ibid. 92, 5734 (1970).

- 7. B. Francus, S.Wu, W.C. Baird Jr. and M.L. Scheinbaum J. Org. Chem. 37, 2759 (1972).
- 8. Compare the lose of methanol by related compounds: ref. 1(b) and H. Hogeveen and P.W. Kwant, <u>Tetrahedron Lett.</u>, submitted.
- 9. The peaks due to the OH protons could not be assigned, because of the presence of impurity peaks
- 10. Loss of water is an important fragmentation in the mass spectrometry of bicyclic alcohols.
 H. Kwart and T.A. Blazer, <u>J. Org. Chem.</u> <u>35</u>, 2726 (1970). The mass spectrum of the isomeric alcohol 7 also shows a strong peak at 178.
- H.N. Junker, W. Schäfer and H. Niedenbräck, <u>Chem. Ber</u>. <u>100</u>, 2508 (1967); see for the corrected structure refs. 3(c), (d).
- 12. Compare for 1-bromoethyl-1,2,3,4,5-pentamethylcyclopentadiene $\lambda_{max}^{methanol} = 260 m_{U}$. L.A. Paquette and G.R. Krow, <u>Tetrahedron Lett</u>. <u>1968</u>, 2139.
- 13. In benzene solution hyperfine structure is observed on the olefinic methyl and methylene proton signals.
- P. v. R. Schleyer, <u>Angew. Chem. 81</u>, 539 (1969); P. Wilder Jr., D.J. Cash, R.C. Wheland and G.W. Wright. <u>J. Am. Chem. Soc</u>. <u>93</u>, 791 (1971).